Magnetic properties of silica coated spindle-type hematite particles.

نویسندگان

  • M Reufer
  • H Dietsch
  • U Gasser
  • B Grobety
  • A M Hirt
  • V K Malik
  • P Schurtenberger
چکیده

Magnetic properties of particles are generally determined from randomly oriented ensembles and the influence of the particle orientation on the magnetic response is neglected. Here, we report on the magnetic characterization of anisotropic spindle-type hematite particles. The easy axis of magnetization is within the basal plane of hematite, which is oriented perpendicular to the spindle axis. Two standard synthesis routes are compared and the effects of silica coating and particle orientation on the magnetic properties are investigated. Depending on the synthesis route we find fundamentally different magnetic behavior compatible with either single domain particles or superparamagnetic sub-units. Furthermore, we show that silica coating reduces the mean blocking temperature to nearly room temperature. The mechanical stress induced by the silica coating appears to reduce the magnetic coupling between the sub-units.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Morphology and orientational behavior of silica-coated spindle-type hematite particles in a magnetic field probed by small-angle X-ray scattering.

Form factor and magnetic properties of silica-coated spindle-type hematite nanoparticles are determined from SAXS measurements with applied magnetic field and magnetometry measurements. The particle size, polydispersity and porosity are determined using a core-shell model for the form factor. The particles are found to align with their long axis perpendicular to the applied field. The orientati...

متن کامل

Single step hybrid coating process to enhance the electrosteric stabilization of inorganic particles.

We report on a single-step coating process and the resulting colloidal stability of silica-coated spindle-type hematite nanoparticles (NPs) decorated with a layer of poly(acrylic acid) (PAA) polyelectrolyte chains that are partially incorporated into the silica shell. The stability of PAA coated NPs as a function of pH and salt concentration in water was compared to bare hematite particles and ...

متن کامل

Inorganic-organic elastomer nanocomposites from integrated ellipsoidal silica-coated hematite nanoparticles as crosslinking agents.

We report on the synthesis of nanocomposites with integrated ellipsoidal silica-coated hematite (SCH) spindle type nanoparticles which can act as crosslinking agents within an elastomeric matrix. Influence of the surface chemistry of the hematite, leading either to dispersed particles or crosslinked particles to the elastomer matrix, was studied via swelling, scattering and microscopy experimen...

متن کامل

Hybrid magnetic iron oxide nanoparticles with tunable field-directed self-assembly.

We describe the synthesis of hybrid magnetic ellipsoidal nanoparticles that consist of a mixture of two different iron oxide phases, hematite (α-Fe2O3) and maghemite (γ-Fe2O3), and characterize their magnetic field-driven self-assembly. We demonstrate that the relative amount of the two phases can be adjusted in a continuous way by varying the reaction time during the synthesis, leading to stro...

متن کامل

High Performance Nanocomposite Cation Exchange Membrane: Effects of Functionalized Silica-Coated Magnetic Nanoparticles

Nanocomposite cation exchange membranes (CEMs) were prepared by adding various amounts of functionalized silica-coated magnetite nanoparticles to the sulfonated polyethersulfone (sPES) polymeric matrix. The particles were synthesized first by the co-precipitation method (M0). Different surface modifications were then carried out on them by grafting three functional groups of mercaptopropyl, pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of physics. Condensed matter : an Institute of Physics journal

دوره 23 6  شماره 

صفحات  -

تاریخ انتشار 2011